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Exact  solutions o f  the problem of  forced convection o f  an incompressible f lu id  (gas) are obtained for  a 

number o f  geometries with the presence of  an interface between an "ideaF f luid and a saturated porous 

medium.  A generalization o f  the Darcy law allowing for  viscous effects that are substantial at the boundaries 

of  a porous body is used to model  f low in a porous layer. The f low velocity as a funct ion of  the Darcy number 

is studied. 

Porous materials find application in many branches of modern industry. Heat pipes, thermal insulation, 

and geothermal installations are a far from complete list of examples of this application. An adequate description 

of systems with porous media is also important for modeling processes of ingot solidification, since the two-phase 

zone formed in solidification of alloys of noneutectic composition can be considered a medium with variable porosity. 

The Darcy law traditionally used for modeling flows in porous media gives rather inaccurate results in a 

number of important applications. One of the generalizations of the Darcy law is made in [1 ], where it is suggested 

to additionally introduce a viscous term, thus making it possible to allow for the effects arising at the boundaries 

of a porous body. Another generalization of the Darcy law was made in [2 ], which proposed allowance for inertia 

effects, which are significant at large rates of filtration, by introducing a term proportional to the square of the 

filtration rate. Since then the influence of viscous and inertia effects has been studied in many works, e.g., [3-9 ]. 

In general, the equation describing the steady-state flow of an incompressible fluid (gas) in a porous medium can 

be presented as 

dp* d2u * ttf . pf  eF .2 

dx* + Izf u - - -  u dy .2 K 
= 0 .  

(1) 

The first term on the LHS of equation (1) describes the effect of the pressure gradient, the second term allows for 

viscous effects and makes it possible to analyze the flow at the boundaries, the third term is the traditional one 

following from the Darcy law, and the fourth term takes into account inertia effects arising at large rates of filtration. 

The present paper deals with forced convection in the presence of an interface between a fluid and a 

saturated porous medium. Such a problem was first analyzed in [101 on the basis of the generalized Darcy law in 

the form of (1). The authors, using the perturbation technique, studied fluid flow and heat transfer at the interface 

of a porous medium for the following three geometries: two semi-bounded porous bodies, a semi-bounded porous 

body and a fluid layer, and a semi-bounded porous body with an impermeable boundary. 

The first attempt to obtain an exact solution for steady-state fluid flow in a porous medium with constant 

porosity in the presence of an interface was undertaken in [ 11 ], where the interface between a semi-bounded porous 

body and a layer of "ideal" fluid was considered. 

At relatively low rates of filtration the last (inertial) term in equation (1) can be ignored without substantial 

loss of accuracy [12-14 ]. Proceeding from the above assumption we seek analytical solutions describing fluid flow 

for a number of practically important geometries, which include an interface between a porous medium and "ideal" 

fluid. 
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Fig. 1. Calculational schemes: a) plane channel, constant porosity; b) plane 

channel, variable porosity; c) cylindrical channel, constant porosity. 

The three studied cases are given in Fig. 1. Case a involves steady-state flow in a plane channel along 

whose walls a porous layer of constant porosity is present and in the center between these two layers there is a 

layer of "ideal" fluid. In case b a plane channel is also analyzed, however the porosity of the porous layers is 

assumed to be a power function of the coordinate. And, finally, in case c a cylindrical channel is considered with 
the porosity assumed to be constant. 

We note that one of the examples of the origination of such a flow in real systems is the familiar problem 

of overfreezing of a gating system in casting. If an alloy having a wide range of parameters is cast, a two-phase 

layer consisting of growing dendrites and liquid metal can form along the walls of the gating channels. The 

formation of this layer can considerably decrease metal consumption in casting, thus resulting in a number of 
engineering flaws. 

Plane Channel, Constant Porosity. In this case fluid flow in the central layer is described by the equation 

dp* d2u * 
- - -  + / ~ f  - 0 ,  ( 2 )  

dx* dy .2 

and fluid flow in the porous layer by 

dp* d2u ,uf . (3) 
- ~--; +/~f u = 0 .  

dx dz .2 K 

The boundary conditions for the problem have the form 

d/~* 

dy* y*=O 

= 0 ,  (4) 

u*[=*= 0 = 0,  (5) 
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U*ly*=H = u*lz*=L,  (6) 

a , ,* l  du* _ (7) 
dy* Ii y*=H dz* z*=L 

The  boundary  condition (5) denotes the assumption about  the absence of slip at the interface between a 

porous medium and an impermeable  wall, and  (6) and (7) are  the conditions of "joining" of the solution at  the 

interface between a porous medium and a layer  of "ideal" fluid. These  conditions and their  physical meaning  are 

discussed in [7, 11 ]. 

On introducing dimensionless variables according to the relations 

u* r z" 
u = - - ~ - ,  y = ~  and z -  H '  (8) 

where U is an a rb i t ra ry  constant  velocity, chosen for reasons of convenient normalization,  Eq. (2) takes the form 

d2u - "~, (9) 
dy 2 

and Eq. (3) becomes 

d2u ,~ + 1 (10) 

dz 2 -- Da 

where 

112 dp* 
v = Da - 

~fU dx 

K ( l l )  

The  exact solution of Eqs. (9) and (10) with the boundary  conditions (4)-(7) (presentat ion of boundary  

conditions in dimensionless form is trivial) has the form 

u =  u i +  (1 - ) when 0 <-y_< 1 which corresponds to ~ z ~ +  1 , (12) 

u = A  t e x p  - z + B  l e x p  z + E D a  when 0 < z - < ~ ,  

where the coordinates y and z are related by z = - y  + 1 + L/H,  

A l = - Z D a  - 

B 1 = 

exp - + exp 
H 

exp - + exp 
H 

855 



// 

0.8 

a6 4 3 

0.4 ",1 

a.2 

0 0,4 0.8 1.2 l, fi z 

Fig. 2. Fluid flow velocity profiles for the case shown in Fig. la: Da = 1 0  - 4  

(1); 10 -3 (2); 10 -2 (3); 10 -1 (4). 

and the flow velocity at the interface between a porous medium and "ideal" fluid ui is fotmd from Eq. (13) at z = 

L / H .  

Fluid flow velocity profiles calculated by Eqs. (12), (13) at L / H  -- 1 and different values of Da are shown 

in Fig. 2. The  dependence  of the flow velocity on the Darcy number  is vividly seen. At small of values Da (Da = 

I0 -4  and Da = 10 -3) the velocity at the interface between a porous medium and "ideal" fluid (this interface takes 

place at z --- L / H  = 1) is practically zero. It increases with the Darcy number,  which corresponds to a higher 

permeabil i ty of the porous medium,  e.g., a greater  porosity. 

The  three  regions with different flow regimes in the porous layer are readily seen on the curve that 

corresponds to Da = 10 -2.  Nea r  the boundary  z = 1 there fast retardat ion of the flow up to some constant  velocity 

corresponding to fluid filtration at a distance from the boundaries  (filtration described by the "classical" Darcy 

law). Near  the boundary  z = 0 the flow velocity continues to retard to zero, which is caused by the absence  of slip 

at the boundary  z = 0. Thus ,  at Da = 10 -2  two boundary  portions can be distinguished in the porous layer: one 

adjacent  to the interface between the porous medium and "ideal" fluid and the other to the impermeable  boundary.  

The  rate  of filtration is constant  between these boundary  regions. The  same flow structure  in the porous layer  takes 

place at Da = 10 -3  and  Da = 10 -4 ,  however, due to the smallness of the filtration rate it is not so vivid. At Da = 

10 -1 one fails to distinguish a region with a constant rate of filtration, since the regions formed at the boundaries  

z = 1 and z = 0 overlap. This  is due to an increase in the width of these regions with the Darcy number .  

Plane Channel,  Variable Porosity.  The  channel flow shown in Fig. l b is considered.  The  mathemat ica l  

formulation of the problem is also determined by Eqs. (9) and (10) and boundary  conditions (4)-(7),  however, in 

this case the Darcy number  entering into Eq. (10) is assumed to be a quadratic function of the coordinate z 

z (14) 
Da = cz , 

where c is a positive constant.  

According to Eq. (14) the Darcy number  changes from zero at z = 0 (which corresponds to zero permeabi l i ty  

of medium or, in other  words,  to zero porosity) to some value Dai = c ( L / H )  2 equal to the Darcy n u m b e r  at the 

interface between a porous medium and "ideal" fluid. The  solution of Eq. (9) in this case still has the form of (12), 

and (10) is reduced to the Euler equation, and its solution [15] with allowance for boundary  conditions (5)-(7) 

has the form 

u = A 2 z ( 1 + 4 1 + 4 / c ) / 2  "~c 2 
2 c _ 1  z , 

(15) 

where 

856 



u 

02t 1 
0 0.4 0.8 t.2 L5 z 

Fig. 3. Fluid flow velocity profiles for the case shown in Fig. Ib: Dai = 10 -3 
(1); 10 -2 (2); 10 - l  (3). 

2c L + 1] 
2E 2 c -  1 H ( 1 - ~ ) / 2  

A2 = ( L )  
(1 +~/1 + 4 / c )  

Equation (15) determines the velocity of fluid flow in a porous layer for 0 <__ z <_ L / H .  

The dependences of the fluid flow velocity on the coordinate z calculated by Eqs. (12) and (15) at L / H  = 

1 and different Da (which is equivalent to assignment of various values of the parameter c in Eq. (14)) are shown 

in Fig. 3. It is seen that in contrast to Fig. 2 fluid flow retardation occurs much more rapidly with "penetration" 

into a porous layer, and a region with a constant filtration rate cannot be distinguished on any curve. This is due 

to the fact that in this case, with reduction of the coordinate z, the medium's permeability gradually decreases to 
zero. 

Cylindrical Channel, Constant Porosity. We consider the cylindrical channel shown in Fig. lc. Instead of 

Eqs. (9) and (10), which are for a plane channel we should write the equations of fluid flow in radial coordinates. 

The fluid flow in the center of a channel free of a porous m e d i u m  is described by the equation 

dZu + 1 du E, (16) 
dr 2 r dr 

and the fluid flow in the channel region occupied by a porous medium is determined by the equation 

Z2u + 1 du E + 1 (17) 

dr 2 r dr Da 

where the dimensionless radial coordinate is determined by the expression r = r*/Rf .  

The boundary conditions for Eqs. (16) and (17) are similar to (4)-(7) and in dimensionless form they can 

be presented as 

d-d~rl r=0 = 0, (18) 

U lr=R/Rf  = 0 ,  (19) 

U l r = l + 0 = U l r = l - 0 ,  (20) 
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Fig. 4. Fluid flow velocity profiles for the case shown in Fig. lc: Da = 10 -3 
(1); 10 -2  (2); 10 - 1  (3 ) .  

d__Eu I du I (21) 
dr r=l+0 dr r=l-O 

The  exact solution of Eqs. (16) and (17) with boundfary conditions (18)-(21) has the form [15] 

r 2 (22) u = u i +  ( I -  ) when 0 < r <  1,  

u = A  3 I  0 + B  3 K  0 + - ' - D a  when 1 ~ r < R / R f ,  (23) 

where 

A3= - -~  
Da ,ol  ) / 

E R - Da R • 

} / 
= ~  _ 1 i i  1 

~ ) +,0/ 1 Rf 

The  flow velocity at the interface between a porous medium and "ideal" fluid ui which enters into Eq. (22 )  

is found from (23) at r = 1. 

The  dependences of the fluid flow velocity on the radius r calculated by Eqs. (22) and (23) at R/Rf  = 2 
and different Da are shown in Fig. 4. As in Fig. 2, on the curve corresponding to Da = 10 -2, two boundary  regions 
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are easily seen in the porous layer, one of which is adjacent to the boundary r -- 1 and the other to the boundary 

r = 2. The flow velocity is constant between these regions. 
Conclusions. It is found that at constant porosity two boundary regions can be distinguished in a porous 

layer, one of which is adjacent to the boundary between the "ideal" fluid and porous medium and the other to the 

impermeable boundary. The filtration rate is constant between these boundary regions. Their width increases with 

the Darcy law; therefore, with a high permeability of the medium these regions can overlap. If the above takes 

place, the porous layer does not have the region with a constant rate of filtration. 
The author is thankful to the A. Humboldt Foundation for financial support of the present study. 

N O T A T I O N  

Da, Darcy number; Dai, Darcy number at the interface between "ideal" fluid and porous medium; F, 

dimensionless coefficient allowing for inertial effects in fluid filtration, which depends on the Reynolds number 
and microstructure of porous medium; Iv and Kv, modified Bessel functions of order v; K, porous-medium 

permeability, m2; H, half-width of fluid layer in plane channel, m; L, width of porous layer in plane channel, m; 
p*, pressure, Pa; r, dimensionless radial coordinate; r*, radial coordinate, m; Rf, radius of interface between "ideal" 

fluid and porous medium in cylindrical channel, m; R, outer radius of cylindrical channel; u, velocity, m/sec; u*, 

dimensionless velocity; x, y, dimensionless Cartesian coordinates; x*, y ,  z , Cartesian coordinates, m; e, porosity; 

/~f, dynamic viscosity of fluid, Pa'sec; pf, fluid density, kg/m 3. 
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